Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 601 - 625 of 956 results
601.

Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo.

blue iLID D. melanogaster in vivo Signaling cascade control Developmental processes
Dev Cell, 11 Feb 2019 DOI: 10.1016/j.devcel.2019.01.009 Link to full text
Abstract: The Erk mitogen-activated protein kinase plays diverse roles in animal development. Its widespread reuse raises a conundrum: when a single kinase like Erk is activated, how does a developing cell know which fate to adopt? We combine optogenetic control with genetic perturbations to dissect Erk-dependent fates in the early Drosophila embryo. We find that Erk activity is sufficient to "posteriorize" 88% of the embryo, inducing gut endoderm-like gene expression and morphogenetic movements in all cells within this region. Gut endoderm fate adoption requires at least 1 h of signaling, whereas a 30-min Erk pulse specifies a distinct ectodermal cell type, intermediate neuroblasts. We find that the endoderm-ectoderm cell fate switch is controlled by the cumulative load of Erk activity, not the duration of a single pulse. The fly embryo thus harbors a classic example of dynamic control, where the temporal profile of Erk signaling selects between distinct physiological outcomes.
602.

Developmental Erk Signaling Illuminated.

blue LOV domains Review
Dev Cell, 11 Feb 2019 DOI: 10.1016/j.devcel.2019.01.022 Link to full text
Abstract: How a small number of signaling pathways can be re-used in distinct embryonic contexts to control different fates remains unclear. In this issue of Developmental Cell, Johnson and Toettcher (2019) use optogenetic approaches to explore how different dynamic ERK signaling states control specific developmental fates in the Drosophila embryo.
603.

Synthetic Control of Protein Degradation during Cell Proliferation and Developmental Processes.

blue LOV domains Review
ACS Omega, 6 Feb 2019 DOI: 10.1021/acsomega.8b03011 Link to full text
Abstract: Synthetic tools for the control of protein function are valuable for biomedical research to characterize cellular functions of essential proteins or if a rapid switch in protein activity is necessary. The ability to tune protein activity precisely opens another level of investigations that is not available with gene deletion mutants. Control of protein stability is a versatile approach to influence the activity of a target protein by its cellular abundance. Diverse strategies have been developed to achieve efficient proteolysis using external inducers or differentiation-coupled signals. The latter is especially important for the inactivation of a protein during a developmental process. Recently, several approaches to achieve this have been engineered. In this article, we present current synthetic tools for regulation of protein stability that allow fine-tuning of protein abundance, their advantages and disadvantages with an emphasis on methods applicable in the context of cell differentiation and development. We give an outlook toward future developments and discuss main applications of these tools.
604.

Optogenetic Navigation of Routes Leading to Protein Amyloidogenesis in Bacteria.

blue AsLOV2 E. coli
J Mol Biol, 2 Feb 2019 DOI: 10.1016/j.jmb.2019.01.037 Link to full text
Abstract: Modulation of liquid-liquid and liquid-hydrogel phase transitions is central to avoid the cytotoxic aggregation of proteins in eukaryotic cells, but knowledge on its relevance in bacteria is limited. Here the power of optogenetics to engineer proteins as light-responsive switches has been used to control the balance between solubility and aggregation for LOV2-WH1, a chimera between the plant blue light-responsive domain LOV2 and the bacterial prion-like protein RepA-WH1. These proteins were first linked by fusing, as a continuous α-helix, the C-terminal photo-transducer Jα helix in LOV2 with the N-terminal domain-closure α1 helix in RepA-WH1, and then improved for light-responsiveness by including mutations in the Jα moiety. In the darkness and in a crowded solution in vitro, LOV2-WH1 nucleates the irreversible assembly of amyloid fibers into a hydrogel. However, under blue light illumination LOV2-WH1 assembles as soluble oligomers. When expressed in Escherichia coli, LOV2-WH1 forms in the darkness large intracellular amyloid inclusions compatible with bacterial proliferation. Strikingly, under blue light LOV2-WH1 aggregates decrease in size while they become detrimental for bacterial growth. LOV2-WH1 optogenetics governs the assembly of mutually exclusive inert amyloid fibers or cytotoxic oligomers, thus enabling the navigation of the conformational landscape of protein amyloidogenesis to generate potential photo-activated anti-bacterial devices (optobiotics).
605.

Optogenetic tools light up phase separation.

blue LOV domains Review
Nat Methods, 30 Jan 2019 DOI: 10.1038/s41592-019-0310-5 Link to full text
Abstract: Abstract not available.
606.

Photo‐ECM: A Blue Light Photoswitchable Synthetic Extracellular Matrix Protein for Reversible Control over Cell–Matrix Adhesion.

blue AsLOV2 in vitro Control of cell-cell / cell-material interactions Extracellular optogenetics
Adv Biosyst, 29 Jan 2019 DOI: 10.1002/adbi.201800302 Link to full text
Abstract: The dynamic and spatiotemporal control of integrin‐mediated cell adhesion to RGD motifs in its extracellular matrix (ECM) is important for understating cell biology and biomedical applications because cell adhesion fundamentally regulates cellular behavior. Herein, the first photoswitchable synthetic ECM protein, Photo‐ECM, based on the blue light switchable protein LOV2 is engineered. The Photo‐ECM protein includes a RGD sequence, which is hidden in the folded LOV2 protein structure in the dark and is exposed under blue light so that integrins can bind and cells can adhere. The switchable presentation of the RGD motif allows to reversibly mediate and modulate integrin‐based cell adhesions using noninvasive blue light. With this protein cell adhesions in live cells could be reversed and the dynamics at the cellular level is observed. Hence, the Photo‐ECM opens a new possibility to investigate the spatiotemporal regulation of cell adhesions in cell biology and is the first step toward a genetically encoded and light‐responsive ECM.
607.

A Photoactivatable Botulinum Neurotoxin for Inducible Control of Neurotransmission.

blue CRY2/CIB1 iLID C. elegans in vivo HEK293T primary rat hippocampal neurons Control of vesicular transport Neuronal activity control
Neuron, 28 Jan 2019 DOI: 10.1016/j.neuron.2019.01.002 Link to full text
Abstract: Regulated secretion is critical for diverse biological processes ranging from immune and endocrine signaling to synaptic transmission. Botulinum and tetanus neurotoxins, which specifically proteolyze vesicle fusion proteins involved in regulated secretion, have been widely used as experimental tools to block these processes. Genetic expression of these toxins in the nervous system has been a powerful approach for disrupting neurotransmitter release within defined circuitry, but their current utility in the brain and elsewhere remains limited by lack of spatial and temporal control. Here we engineered botulinum neurotoxin B so that it can be activated with blue light. We demonstrate the utility of this approach for inducibly disrupting excitatory neurotransmission, providing a first-in-class optogenetic tool for persistent, light-triggered synaptic inhibition. In addition to blocking neurotransmitter release, this approach will have broad utility for conditionally disrupting regulated secretion of diverse bioactive molecules, including neuropeptides, neuromodulators, hormones, and immune molecules. VIDEO ABSTRACT.
608.

Synthetic switches and regulatory circuits in plants.

blue green near-infrared red UV Cobalamin-binding domains Cryptochromes LOV domains Phytochromes UV receptors Review
Plant Physiol, 28 Jan 2019 DOI: 10.1104/pp.18.01362 Link to full text
Abstract: Synthetic biology is an established but ever-growing interdisciplinary field of research currently revolutionizing biomedicine studies and the biotech industry. The engineering of synthetic circuitry in bacterial, yeast, and animal systems prompted considerable advances for the understanding and manipulation of genetic and metabolic networks; however, their implementation in the plant field lags behind. Here, we review theoretical-experimental approaches to the engineering of synthetic chemical- and light-regulated (optogenetic) switches for the targeted interrogation and control of cellular processes, including existing applications in the plant field. We highlight the strategies for the modular assembly of genetic parts into synthetic circuits of different complexity, ranging from Boolean logic gates and oscillatory devices up to semi- and fully synthetic open- and closed-loop molecular and cellular circuits. Finally, we explore potential applications of these approaches for the engineering of novel functionalities in plants, including understanding complex signaling networks, improving crop productivity, and the production of biopharmaceuticals.
609.

Perspective Tools for Optogenetics and Photopharmacology: From Design to Implementation.

blue red UV Cryptochromes LOV domains Phytochromes UV receptors Review
Prog Photon Sci, 24 Jan 2019 DOI: 10.1007/978-3-030-05974-3_8 Link to full text
Abstract: Optogenetics and photopharmacology are two perspective modern methodologies for control and monitoring of biological processes from an isolated cell to complex cell assemblies and organisms. Both methodologies use optically active components that being introduced into the cells of interest allow for optical control or monitoring of different cellular processes. In optogenetics, genetic materials are introduced into the cells to express light-sensitive proteins or protein constructs. In photopharmacology, photochromic compounds are delivered into a cell directly but not produced inside the cell from a genetic material. The development of both optogenetics and photopharmacology is inseparable from the design of improved tools (protein constructs or organic molecules) optimized for specific applications. Herein, we review the main tools that are used in modern optogenetics and photopharmaclogy and describe the types of cellular processes that can be controlled by these tools. Although a large number of different kinds of optogenetic tools exist, their performance can be evaluated with a limited number of metrics that have to be optimized for specific applications.We classify thesemetrics and describe the ways of their improvement.
610.

Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions.

blue CRY2/CIB1 Magnets HEK293T mouse in vivo Nucleic acid editing Neuronal activity control
Nat Commun, 18 Jan 2019 DOI: 10.1038/s41467-018-08282-8 Link to full text
Abstract: Spatiotemporal control of gene expression or labeling is a valuable strategy for identifying functions of genes within complex neural circuits. Here, we develop a highly light-sensitive and efficient photoactivatable Flp recombinase (PA-Flp) that is suitable for genetic manipulation in vivo. The highly light-sensitive property of PA-Flp is ideal for activation in deep mouse brain regions by illumination with a noninvasive light-emitting diode. In addition, PA-Flp can be extended to the Cre-lox system through a viral vector as Flp-dependent Cre expression platform, thereby activating both Flp and Cre. Finally, we demonstrate that PA-Flp-dependent, Cre-mediated Cav3.1 silencing in the medial septum increases object-exploration behavior in mice. Thus, PA-Flp is a noninvasive, highly efficient, and easy-to-use optogenetic module that offers a side-effect-free and expandable genetic manipulation tool for neuroscience research.
611.

Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing.

blue AsLOV2 HeLa
Nat Commun, 17 Jan 2019 DOI: 10.1038/s41467-018-08050-8 Link to full text
Abstract: From a single domain of cyanobacteriochrome (CBCR) we developed a near-infrared (NIR) fluorescent protein (FP), termed miRFP670nano, with excitation at 645 nm and emission at 670 nm. This is the first CBCR-derived NIR FP evolved to efficiently bind endogenous biliverdin chromophore and brightly fluoresce in mammalian cells. miRFP670nano is a monomer with molecular weight of 17 kDa that is 2-fold smaller than bacterial phytochrome (BphP)-based NIR FPs and 1.6-fold smaller than GFP-like FPs. Crystal structure of the CBCR-based NIR FP with biliverdin reveals a molecular basis of its spectral and biochemical properties. Unlike BphP-derived NIR FPs, miRFP670nano is highly stable to denaturation and degradation and can be used as an internal protein tag. miRFP670nano is an effective FRET donor for red-shifted NIR FPs, enabling engineering NIR FRET biosensors spectrally compatible with GFP-like FPs and blue-green optogenetic tools. miRFP670nano unlocks a new source of diverse CBCR templates for NIR FPs.
612.

Optoregulated Drug Release from an Engineered Living Material: Self-Replenishing Drug Depots for Long-Term, Light-Regulated Delivery.

blue YtvA E. coli Transgene expression
Small, 27 Dec 2018 DOI: 10.1002/smll.201804717 Link to full text
Abstract: On-demand and long-term delivery of drugs are common requirements in many therapeutic applications, not easy to be solved with available smart polymers for drug encapsulation. This work presents a fundamentally different concept to address such scenarios using a self-replenishing and optogenetically controlled living material. It consists of a hydrogel containing an active endotoxin-free Escherichia coli strain. The bacteria are metabolically and optogenetically engineered to secrete the antimicrobial and antitumoral drug deoxyviolacein in a light-regulated manner. The permeable hydrogel matrix sustains a viable and functional bacterial population and permits diffusion and delivery of the synthesized drug to the surrounding medium at quantities regulated by light dose. Using a focused light beam, the site for synthesis and delivery of the drug can be freely defined. The living material is shown to maintain considerable levels of drug production and release for at least 42 days. These results prove the potential and flexibility that living materials containing engineered bacteria can offer for advanced therapeutic applications.
613.

Optogenetic Delineation of Receptor Tyrosine Kinase Subcircuits in PC12 Cell Differentiation.

blue VfAU1-LOV PC-12 Signaling cascade control Cell differentiation
Cell Chem Biol, 27 Dec 2018 DOI: 10.1016/j.chembiol.2018.11.004 Link to full text
Abstract: Nerve growth factor elicits signaling outcomes by interacting with both its high-affinity receptor, TrkA, and its low-affinity receptor, p75NTR. Although these two receptors can regulate distinct cellular outcomes, they both activate the extracellular-signal-regulated kinase pathway upon nerve growth factor stimulation. To delineate TrkA subcircuits in PC12 cell differentiation, we developed an optogenetic system whereby light was used to specifically activate TrkA signaling in the absence of nerve growth factor. By using tyrosine mutants of the optogenetic TrkA in combination with pathway-specific pharmacological inhibition, we find that Y490 and Y785 each contributes to PC12 cell differentiation through the extracellular-signal-regulated kinase pathway in an additive manner. Optogenetic activation of TrkA eliminates the confounding effect of p75NTR and other potential off-target effects of the ligand. This approach can be generalized for the mechanistic study of other receptor-mediated signaling pathways.
614.

Optoregulated Protein Release from an Engineered Living Material.

blue YtvA E. coli Transgene expression
Adv Biosyst, 17 Dec 2018 DOI: 10.1002/adbi.201800312 Link to full text
Abstract: Developing materials to encapsulate and deliver functional proteins inside the body is a challenging yet rewarding task for therapeutic purposes. High production costs, mostly associated with the purification process, short-term stability in vivo, and controlled and prolonged release are major hurdles for the clinical application of protein-based biopharmaceuticals. In an attempt to overcome these hurdles, herein, the possibility of incorporating bacteria as protein factories into a material and externally controlling protein release using optogenetics is demonstrated. By engineering bacteria to express and secrete a red fluorescent protein in response to low doses of blue light irradiation and embedding them in agarose hydrogels, living materials are fabricated capable of releasing proteins into the surrounding medium when exposed to light. These bacterial hydrogels allow spatially confined protein expression and dosed protein release over several weeks, regulated by the area and extent of light exposure. The possibility of incorporating such complex functions in a material using relatively simple material and genetic engineering strategies highlights the immense potential and versatility offered by living materials for protein-based biopharmaceutical delivery.
615.

Using Synthetic Biology to Engineer Spatial Patterns.

blue green red Cryptochromes Cyanobacteriochromes LOV domains Phytochromes Review
Adv Biosyst, 17 Dec 2018 DOI: 10.1002/adbi.201800280 Link to full text
Abstract: Synthetic biology has emerged as a multidisciplinary field that provides new tools and approaches to address longstanding problems in biology. It integrates knowledge from biology, engineering, mathematics, and biophysics to build—rather than to simply observe and perturb—biological systems that emulate natural counterparts or display novel properties. The interface between synthetic and developmental biology has greatly benefitted both fields and allowed to address questions that would remain challenging with classical approaches due to the intrinsic complexity and essentiality of developmental processes. This Progress Report provides an overview of how synthetic biology can help to understand a process that is crucial for the development of multicellular organisms: pattern formation. It reviews the major mechanisms of genetically encoded synthetic systems that have been engineered to establish spatial patterns at the population level. Limitations, challenges, applications, and potential opportunities of synthetic pattern formation are also discussed.
616.

Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons.

blue cyan red Cryptochromes FKF1/G1 Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 14 Dec 2018 DOI: 10.3390/ijms19124052 Link to full text
Abstract: Cellular activation of RAS GTPases into the GTP-binding "ON" state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson's disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
617.

An Open-Source Plate Reader.

blue EL222 in vitro
Biochemistry, 4 Dec 2018 DOI: 10.1021/acs.biochem.8b00952 Link to full text
Abstract: Microplate readers are foundational instruments in ex-perimental biology and bioengineering that enable mul-tiplexed spectrophotometric measurements. To enhance their accessibility, we here report the design, construc-tion, validation, and benchmarking of an open-source microplate reader. The system features full-spectrum absorbance and fluorescence emission detection, in situ optogenetic stimulation, and stand-alone touch screen programming of automated assay protocols. The total system costs <$3500, a fraction of the cost of commer-cial plate readers, and can detect the fluorescence of common dyes down to ~10 nanomolar concentration. Functional capabilities were demonstrated in context of synthetic biology, optoge¬netics, and photosensory biol-ogy: by steady-state measurements of ligand-induced reporter gene expression in a model of bacterial quorum sensing, and by flavin photocycling kinetic measure-ments of a LOV (light-oxygen-voltage) domain photo-receptor used for optogenetic transcriptional activation. Fully detailed guides for assembling the device and au-tomating it using the custom Python-based API (Appli-cation Program Interface) are provided. This work con-tributes a key technology to the growing community-wide infrastructure of open-source biology-focused hardware, whose creation is facilitated by rapid proto-typing capabilities and low-cost electronics, optoelec-tronics, and microcomputers.
618.

A bright future: optogenetics to dissect the spatiotemporal control of cell behavior.

blue cyan BLUF domains Cryptochromes Fluorescent proteins LOV domains Review
Curr Opin Chem Biol, 4 Dec 2018 DOI: 10.1016/j.cbpa.2018.11.010 Link to full text
Abstract: Cells sense, process, and respond to extracellular information using signaling networks: collections of proteins that act as precise biochemical sensors. These protein networks are characterized by both complex temporal organization, such as pulses of signaling activity, and by complex spatial organization, where proteins assemble structures at particular locations and times within the cell. Yet despite their ubiquity, studying these spatial and temporal properties has remained challenging because they emerge from the entire protein network rather than a single node, and cannot be easily tuned by drugs or mutations. These challenges are being met by a new generation of optogenetic tools capable of directly controlling the activity of individual signaling nodes over time and the assembly of protein complexes in space. Here, we outline how these recent innovations are being used in conjunction with engineering-influenced experimental design to address longstanding questions in signaling biology.
619.

Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds.

blue iLID C. elegans in vivo HEK293 HeLa NIH/3T3 S. cerevisiae U-2 OS Organelle manipulation
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.10.048 Link to full text
Abstract: Liquid-liquid phase separation plays a key role in the assembly of diverse intracellular structures. However, the biophysical principles by which phase separation can be precisely localized within subregions of the cell are still largely unclear, particularly for low-abundance proteins. Here, we introduce an oligomerizing biomimetic system, ‘‘Corelets,’’ and utilize its rapid and quantitative light-controlled tunability to map full intracellular phase diagrams, which dictate the concentrations at which phase separation occurs and the transition mechanism, in a protein sequence dependent manner. Surprisingly, both experiments and simulations show that while intracellular concentrations may be insufficient for global phase separation, sequestering protein ligands to slowly diffusing nucleation centers can move the cell into a different region of the phase diagram, resulting in localized phase separation. This diffusive capture mechanism liberates the cell from the constraints of global protein abundance and is likely exploited to pattern condensates associated with diverse biological processes.
620.

Mechanobiology of Protein Droplets: Force Arises from Disorder.

blue Cryptochromes LOV domains Review
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.11.020 Link to full text
Abstract: The use of optogenetic approaches has revealed new roles for intracellular protein condensates described in two papers in this issue of Cell (Bracha et. al., 2018; Shin et al., 2018). These results show that growing condensates are able to exert mechanical forces resulting in chromatin rearrangement, establishing a new role for liquid-liquid phase separation in the mechanobiology of the cell.
621.

Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome.

blue CRY2/CRY2 iLID HEK293 HEK293T NIH/3T3 U-2 OS Organelle manipulation
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.10.057 Link to full text
Abstract: Phase transitions involving biomolecular liquids are a fundamental mechanism underlying intracellular organization. In the cell nucleus, liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is implicated in assembly of the nucleolus, as well as transcriptional clusters, and other nuclear bodies. However, it remains unclear whether and how physical forces associated with nucleation, growth, and wetting of liquid condensates can directly restructure chromatin. Here, we use CasDrop, a novel CRISPR-Cas9-based optogenetic technology, to show that various IDPs phase separate into liquid condensates that mechanically exclude chromatin as they grow and preferentially form in low-density, largely euchromatic regions. A minimal physical model explains how this stiffness sensitivity arises from lower mechanical energy associated with deforming softer genomic regions. Targeted genomic loci can nonetheless be mechanically pulled together through surface tension-driven coalescence. Nuclear condensates may thus function as mechanoactive chromatin filters, physically pulling in targeted genomic loci while pushing out non-targeted regions of the neighboring genome.
622.

Guided by light: optogenetic control of microtubule gliding assays.

blue TULIP in vitro Extracellular optogenetics
Nano Lett, 19 Nov 2018 DOI: 10.1021/acs.nanolett.8b03011 Link to full text
Abstract: Force generation by molecular motors drives biological processes such as asymmetric cell division and cell migration. Microtubule gliding assays, in which surface-immobilized motor proteins drive microtubule propulsion, are widely used to study basic motor properties as well as the collective behavior of active self-organized systems. Additionally, these assays can be employed for nanotechnological applications such as analyte detection, bio-computation and mechanical sensing. While such assays allow tight control over the experimental conditions, spatiotemporal control of force generation has remained underdeveloped. Here we use light-inducible protein-protein interactions to recruit molecular motors to the surface to control microtubule gliding activity in vitro. We show that using these light-inducible interactions, proteins can be recruited to the surface in patterns, reaching a ~5-fold enrichment within 6 seconds upon illumination. Subsequently, proteins are released with a half-life of 13 seconds when the illumination is stopped. We furthermore demonstrate that light-controlled kinesin recruitment results in reversible activation of microtubule gliding along the surface, enabling efficient control over local microtubule motility. Our approach to locally control force generation offers a way to study the effects of non-uniform pulling forces on different microtubule arrays and also provides novel strategies for local control in nanotechnological applications.
623.

Mitotic Spindle: Illuminating Spindle Positioning with a Biological Lightsaber.

blue LOV domains Review
Curr Biol, 19 Nov 2018 DOI: 10.1016/j.cub.2018.09.047 Link to full text
Abstract: In metazoans, positioning of the mitotic spindle is controlled by the microtubule-dependent motor protein dynein, which associates with the cell cortex. Using optogenetic tools, two new studies examine how the levels and activity of dynein are regulated at the cortex to ensure proper positioning of the mitotic spindle.
624.

Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution.

blue AsLOV2 HeLa in vitro S. cerevisiae Epigenetic modification
ACS Synth Biol, 15 Nov 2018 DOI: 10.1021/acssynbio.8b00368 Link to full text
Abstract: Optogenetic techniques use light-responsive proteins to study dynamic processes in living cells and organisms. These techniques typically rely on repurposed naturally occurring light-sensitive proteins to control sub-cellular localization and activity. We previously engineered two optogenetic systems, the Light Activated Nuclear Shuttle (LANS) and the Light-Inducible Nuclear eXporter (LINX), by embedding nuclear import or export sequence motifs into the C-terminal helix of the light-responsive LOV2 domain of Avena sativa phototropin 1, thus enabling light-dependent trafficking of a target protein into and out of the nucleus. While LANS and LINX are effective tools, we posited that mutations within the LOV2 hinge-loop, which connects the core PAS domain and the C-terminal helix, would further improve the functionality of these switches. Here, we identify hinge-loop mutations that favourably shift the dynamic range (the ratio of the on- to off-target subcellular accumulation) of the LANS and LINX photoswitches. We demonstrate the utility of these new optogenetic tools to control gene transcription and epigenetic modifications, thereby expanding the optogenetic 'tool kit' for the research community.
625.

Target Sequence Recognition by a Light-Activatable Basic Leucine Zipper Factor, Photozipper.

blue VfAU1-LOV in vitro
Biochemistry, 13 Nov 2018 DOI: 10.1021/acs.biochem.8b00995 Link to full text
Abstract: Photozipper (PZ) is a light-activatable basic leucine zipper (bZIP) protein composed of a bZIP domain and a light-oxygen-voltage-sensing domain of aureochrome-1. Blue light induces dimerization and subsequently increases the affinity of PZ for the target DNA sequence. We prepared site-directed PZ mutants in which Asn131 (N131) in the basic region was substituted with Ala and Gln. N131 mutants showed spectroscopic and dimerization properties almost identical to those of wild-type PZ and an increase in helical content in the presence of the target sequence. Quantitative analyses by an electrophoretic mobility shift assay and quartz crystal microbalance (QCM) measurements demonstrated that the half-maximal effective concentrations of N131 mutants to bind to the target sequence were significantly higher than those of PZ. QCM data also revealed that N131 substitutions accelerated the dissociation without affecting the association, suggesting that a base-specific interaction of N131 occurred after the association between PZ and DNA. Activation of PZ by illumination decreased both the standard errors and the unstable period of QCM data. Optical control of transcription factors will provide new knowledge of the recognition of the target sequence.
Submit a new publication to our database